ﬂ AD=AL103 101 KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/8 9/2
RESEARCH IN FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS DEVELOPME==ETC(U)
FEB 76 F J MARYANSKIr V E WALLENTINE DAAG29=76=6-0108
UNCLASSIFIED (S=76-03 NL

- - 'Y T T“\{ﬂ% v//f'l/ ~
A B /
. ﬁ,ﬂ u e

| AIRMICS Army Institute for Research in

Management Information and GA Institute of Technology
Computer Science Atlanta, GA 30332

Technical Report

RESEARCH IN FUNCTIONALLY
DISTRIBUTED COMPUTER

SYSTEMS DEVELOPMENT

ADA103101

Kansas State University

Virgil Wallentine

Principal Investigator

By Oy 4] .
LoAle oY 1381 4
rd b M

Approved for public releass; distribution unlimited A

VOLLME XVII

IMPLEMENTATION OF A DISTRIBUTED
DaTA BA SE SYsTEM

U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060

81 8 19 084

,_:I.n‘}'é”m YQP-{-') :

UNCLASSTFIED A

SECURITY CLASSIFICATIAN OF THIS 1 AGE (When Datas tntered:

v REPORT DOCUMENTATION PAGE B A e H e ONS

2. GOVT ‘ﬁ‘“.on NOJ 3. RECIPIENT'S CATALOGL NUMODER

aseny S -
T Compi e Sl T TR ey |
4 -

}MPLEMENTATION OF A DISTRIBUTED geTA BASE . »-—mit!rtm~“““ e - !
SYSTEM . b %4 /@ OAG. REPDRT NUMBER
N Jd /] es6-g3

. CONTRACY OR ONANT NUMBER(s)

7. Aul’nw’)
7 . i —~—i. . -
! ,{ i IO Fred’Maryanski ! // R o T , v
N ivirgil E. IHallentine { /ﬁ //DAM: 29-76-0~01ﬁ8;
) —]
. PERFORMING ORGANIZATION NAME AND ADDRESS 0. r.mtiﬁlt‘Al'ao!“L‘E:::«TY"zlﬁ:.;EEcv TASK
Kansas State University
Department of Computer Sc1ence
¢ Manhattan, KS 66506
1. CONTROLLING OFFICE NAME AND ADDRESS -—————-7
US Army Research Office Feb musummmid 7 6
b P 2 Box 12211 . Foaces— 7
Research Triangle Park, NC 27700 18 pages i
L T4 MONITORING AGENCY NAME & ADDAESS(i! difterent teom Coatrolling Qltice) TsTsecuattv CLASS. (of this seport)
US Army Computer Systems Command
Attn: CSCS-AT -y Unclassified
. . -
Ft. Belvoir, VA 2206 Q i_ _ 5. BECLASTITICATION GOWNGRADING

. DISTRIBUTION STATEMENT (of this Repor

Approved for public release; distribution unlimited.

O, S P ;——E oA e s

—

. DISTRIBUTION STATEMENT (of the #*itract entered in Block 20, il dillerant from Report)

- ey
-
~

8. SUPPLEMENTARY NOTES
The findings in this report are not to be construed as an official
Department of the Army position, unless so designared by other authorized
documents.

19. KEY WORDOS (Cantinus on reverae aide if necessary and identity by block aumber)

DBMS

" DoUMS
Distributed processing

Network Systems)

20 ABSTRACY (Continue on reverse eide If nacesesry and identity by block number)

~over—

e ae—
-~

DD ,%u%, 1473 coimion of 1 nov 8315 oBsOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFLED

SECUMITY CLASSIFICATION OF THIS PAGE(When Deta Fntered)

=ABSTRACT-

In this paper we present an overview of data base
management systems (DBMS), the motivation for distributed
data base systems (DDBMS), a set of possible network
topologies served by the distribution, the mechanisms
necesgsary to integrate (and communicate between) the DDBMS

‘system elements when distributed across a nonhomogeneous

network of minicomputers, and some implementation details on
a prototype system. The current prototype distributes the
DBMS and application program function across an IBM 370/158
and a {minicomputer) NOVA 2/10. 1In the near future, a third
mac:ine, the Interdata 85 minicomputer, will be added to the
network, The DBMS used is a network system as specified by
CODASYL. The emphasis in this paper will be on the problems
posed by the heterogeneous machines and the intertask
(processor) communication system which is utilized in the
distribution of data, programs, and control. .

—— .

R e e N

s

prm— v iae

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Kntered)

R . - ———
-~ .
A
Implementation of a Distributed
Data Base System)
i
*Technical Report
Cs76-03
V.E. Wallentine and F.J. Maryanski
-
February 1976
. Dept. of Computer Science
Kansas State University .
', This work has been partially supported by the U.S. Army Re -
‘ Office Grant No. DAAG29-76-G-0108. Accegsim'“r‘;r.
NTIS GRAeI i]
DTIC TaB
¢ Unannounced
i Justificationa___fz___J
: D !
D At ———
L {El'loution/
- | A Qi gogem
AVOil and/op

Special

ABSTRAC™

In this paper we present an overview of data base management systems
f (DBMS), the motivation for distributed data base systems (DDBMS), a set
of possible network topologies served by the distribution, the mechanisms
neceggary to integrate (and communicate between) the DDBMS system elements
when distributed across a non-homogeneous network of mini-computers, and
some implementation details on a prototype system. The current prototype
distributes the DBMS and application program function across an IBM
370/158 and a (mini-computer) NOVA 2/10. 1In the near fﬁtute a third
na;hine, the Interdata 85 mini-computer, will be added to the neéwork.
- The DBMS used is a network system as specified by CODASYL. The emphasis
| in this paper will be on the problems posed by the heterogeneous machines

and the inter-task (processor) communication system which is utilized in

the distribution of data, programs, and control.

e

% g

I. Motivation for Distributed Data Base Systems

A. Back-End Data Base Management Systems

It has been a long standing practice in computing to attempt to maximize
the amount of processing performed by the Central Processing Unit (CPU). ,
Cdenerally, this has been accomplished by reducing the amount of time the |
CPU must wait for information from the slower input/output devices. SeQeral }
major developments in computer science have resulted from the desire to i
maximize CPU utilization. Among these developments are interrupt driven 1/0,
slave 1/0 processors,.direct‘memory access, multiprogramming, multiprocessing,
and distributed networks.

The advent of data base management systems (DBMS) has resulted in more
efficient organization of data on secondary storage devices and the develop- ;
ment of powerful high-level languages for the manipulation of data. A
statement in such a data manipulation language (DML) could result in
several I/0 operations being performed. In a standard multiprogramming
environment, execution of one such DML statement could fotc; the systenm
1n£o multiple task switches. This would result in considerable 6verhead.
To reduce this overhead, Canaday, et al [1] have developed thé concept of
a back-end computer for data base management. In a back-end system, a
minicomputer is used as a dedicated précbssor for the DML statements. The
minicomputer has exclusive access to the secondary storage devices upon

which the data resides. Whenever the host computer encounters a DML

statement, a message 1s transmitted to the minicomputer indicating the

DML statement and its arguments. The back-end machine then performs the
DML statement and all its necessary I1/0 operations. 1In effect, the back-
end computer is treated as a sophisticated I/O device for the host machine.
The incorporation of the back-end minicomputer into the system reduces CPU

1

AR . 5 SRR O

swapping on the host computer and provides for an overall increase in avail-
ability of aystem resources.

The two principal a§vantages of a bick-end DBMS are the reduction in
primary memory requirements within the host computer and an increase in
overall system performance. Primary memory is reduced in the host by
moving dﬁta base functions and buffer areas to the back-end machine. In
the gystem being developed, the overall reduction in primary memory require-
ments in the host machine is 31K + N*20K where N is the number of application
programs executing in the host. Details regarding the distribution of
software between the host and back-end machines are givem in Section II of
this paper.

B. Distributed Systems

A back-end DBMS as originally conceived {1] consisted of a large general -
purpose computer as the host machine and a dedicated mini computer as the
back-end processor. Figure 1 illustrates a typical back-end configuration.
The host computer executes the application programs which generate requests
for information from the data base. These access requeats are sent via
the host message system to the back-end system.

Once a request has reached the back-end system, 1t activates
th= DBMS and is queued at individual DBMS tasks. Each sask is scheduled
by the back-end message system to access the data base a: number of times
wnril the appropriate DML operation has been performed. Upon completion
cf the data base operation, a message is returned to the application program
“ia the interveaing message systems, 1/0 drivers, and mhe inter-computer
communications channei. Such messages consist of requasted data and
8tatus conditions on store and retrieval requests.

The DBMS configuration discussed thus far.is compoerd of two computers.
Several extensions to this basic configuration are p;uﬁble. Let us first

2

consider a network DBMS with several application and several back-end
machines (Figure 2). 1In this arrangement, an application program may
access any data base, provided there is a.connection to the managing back-
end machine for that data base.

« In all previous discussions of back-end DBMS, it has been assumed that
tﬁe back-end machine will be dedicated to data base operations. In some
cases, this restriction may inhibit full utilization of system resources.

" Provided that the back-end machine has a multiprogramming executive system,
there should be no difficulty in allowing it to perform tasks other than DML
operations. In a generalized situation, a processor could be performing
DML operations on a data base while at the same time executing an application
program which requests data base information of another processor in the
system. Such a processor is considered to be bi-functional. In a generalized
DBMS network, the only restriction as to the function of a processor is

its physical connection to secondary storage. Figure 3 displays

a DBMS network with host, back-end, and bl-functional nodes.

. In order to maximize system resource utilization in a network DBMS,
the wvorkload of the nodes must be balanced. This can be accomplished if
tasks can be distributed among the processors in the network in an equitable
manner. A distributed DBMS (Figure 4) can'realize this goal. In a distri-
buted DBMS, each node is bi-functional. An application program may be
executed by any processor. The selection of the application processor is
done automatically and is transparent to the user. As in previous topologies,
data base functions are limited by physical connections to the machine which
controls the I/0 device on which the data base resides.

11. Data Basec Management Software

A. Central DBMS
The data base software to be used in the distributcd data base network

is obtaincd by altering an existing data base management package. A brief

\ J

it ¥

*'—““':_t‘

description of the main features of the DBMS is given below. Details may

be found in Refercnces [2,3]. The DBMS contains three basic languages-;a
data definition language (bDL) for deécribing the data base to be accessed

by a program, a data manipulation language (DML) which prescribes the manmer

in which the data are transferred between the application program and the

data base, and a Device Media Control Language (DMCL) which maps the data

.

¢nto physical storage.

4
{
i

The DDL is divided into two components, schema DDL and sub-schema DDL.
A schema DDL is employed to describe the entire data base in terms of the
huzacteristic relatidonship between the data items. The sub-schema describes
the data base as viewed by the application'process. The sub-schema provides
for 1lmicing the access of a program to a particular portion of a data
vast, or allowing a particular program to modify a data base for its own
purposes without affecting the use of the data base by other programs.

The DML is used to augment the host high-level language of the data -

base management system. The DML provides the capability of performing complex
data set manipulations in a single high-level language statement. The host
language may be any general purpose high-level language. In keeping with
CODASYL recommendations, the DML features have been added to COBOL by

means of a pre-processor. The preproceésor translates DML statcments into
CCBOL for compilation and execution.

To implement the DBMS both preprocéssing and execution software modules

are necessary. The preprocessing modules incluae the DDL schema processor,
%< DDL subschema processor, DMCL processor, and the DML preprocessor. The

major exccution modules are the subschema interface (IDMS), the data base

manager (DBMS), the data base I/0 routine (DBIO), and the multitasking

. control program (CAMP). '

Figure 5 1llustrates the actions taken when a DML siateaent is executed.

4

A DML statement takes the form of a call to the interface routine. The
interface routine then transmits a message instructing the DBMS routine to
perforn the appropriate data base function. If the DML gtatement requires
information no; presently in the system data buffers the DBIO routine is
called to perform the actual 1/0 operation; The data obtained and pertinent
oé;tus information is transmitted back to the application program through
the DBMS and IDMS routines. Hu1t1¥c§sking of the DEMS routine occurs u9der
the control of the CAMP monitor. All actions affecting the data base are
recorded on a journal tape for recovery purposes.

B. Distributed DBMS

In order to implement the DBMS system in a distributed mnetwork, the
software must be allocated across the application'(host) and back-end machines.
In keeping with the philosophy behind the back-end concept, modules and tables
ugsed in managing and accessing the data base are transferred to the back~end.
Figures 5 and 6 depict the distribution of software between the application
and back-end computers. This division is intended to minimize the number
of requests the application CPU makes of the data base manager and to keep
the anount.oi information actually transferred between machines at a
minioum. Inter-machine communication is accomplished by employing the inter-
computer communications channel to transmit information between the interface
routine and the data base manager. This ;ransmiSsion takes place under the
aegis of a general message system which i{s described in the next section of
this paper.

To optimize overall system performance, the DBMS, IBIO, the recovery
portions of CAMP, and thé-recordkeeping operations must be transported to the
back-end. Since the data base operations will be performed by the back-end
machine, it is necessary to have the subschema available for validatinn of
the DML requests. Positioning the subschema in the back-end machine will

L)

=

also minimize the amount of traffic on the inter-computer . ~/

communications channcl.

A substantial portion of the data base software is remowed from the
application machine. Since the subschema has been moved to the back-end,
much of the validation performed by the interface routine im the present
version can be performed on the back-end machine by the DBMS. The interface
routine in the back-end version need only transmit informatien between
che application program and the message system. The functisas of CAMP on
the host machine are to check for abnormal termination in the application
program and to insure that th; area associated with each DEMS task is open.
The task control functions of CAMP are handled by the message system and

the operating system in a network environment.
o}

111. Inter-Computer Communication System (ICCS) \

A. Introductory concepts

The ICCS prototype was developed to provide the requisite communication

1 lines between application tasks ard DBMS tasks. It consists of two sub-

systems, as shown in Figure 7, which coordinate the exchamge of both control
information and data. The Multicomputer Communications System (MCCS) executes

) on the IBM 370 as a CMS machine under VM/370. The Inter-Task Communications

e

3ystem (ITCS) executes on the Data General Nova 2/10 under the RDOS operating

O G - T

systenm.

Earsets

ITCS and MCCS perform identical functions, i.e. control the exchange of

= o

A

messages between machines and tasks. But they were constructed under quite

diverse constraints. MCCS is a single task implementatiom of the message

Dy ope

control system and was targeted to execute under a single task operating
system such as CMS. 1TCS is a multl-tasking version and is constructed to
run under a multi-tasking system with an efficient inter-task communication

6

el TS WP

system (such as those provided in real-time operating systems on wmini-
computers).

The operation of the inter-task message system proceeds as displayed in
Figure 7. The appllcati&n program issues DML statements. These DML requests
are converted to a series of messages to be exchanged between the interface
gnd the DBMS tasks. Each message is sent to a unique DBMS task in the back-
end pne for each defined level of multi-threading of the data base) via MCCS
and ITCS., Each is routed to the appropriate task (indicated by a unique
name) via the chosen hardware link (telecommunications, channel-to-channel
adapter, etc.). Upon }eceipt of a message at ITCS, it is queued until
requested by the DBMS task. Upon completion of the DML function, messages
are transmitted back to the application program interface. These messages
compose the response to the task in the host that issued the DML. These
messages are again transmitted via the MCCS/ITCS communication link,

Messages (both data and control) are directed to a particular task
via a SEND procedure; and messages are requested from a task via a RECEIVE
protedure, Their usage in our prototype system in a back-end DBMS environ-

ment 18 given in Figure 8, The SEND procedure identifies the name of the

task addressed by a TO_ID parameter, The RECIEVE procedure optionally identifies

a particular task to receive a message in FROM ID, or receives a message

from any task on a first-come-first-serve manner, RECEIVE can also specify whe-

ther the task issuing the receive 1is to wait for that message or proceed
anconditionally. In the remainder of this section we describe the function
and structure of ICCS as it currently exists. And we further discuss its
dependence on currently available software and hardware communications
coaponents,

B. ICCS Software Structure

The functional characteristics of the ICCS are as follows:

7

N

B
!

rom

Pt~ e

I T T

1. it provides synchronization between tasks as well as processors; ~/
2. it provides a message exchange system between tasks through
which both data and control information can pass;
3. 1t ha;dles buffer management in both the host and back-end
processor;
4. it isolates the application program interface and the DBMS tasks
from any knowledge of the physical location of the others, i.e.
wvhether the host and back-end are connected locally or remotely;
5. it provides a well-defined interface (the CALL statement) to

both the interface and the DBMS task; and

6. 4t is modular and hierarchical in nature so as to permit the !
straightforward modification necessary to adapt ICCS to most
operating and teleprocessing system environments.

The hierarchical structure of ICCS will be discussed in terms of

its integration into the operating, I/0 control, and teleprocessing systems
on conventional computers. Figure 9 displays the different levels of
software necessary for application programs to do 1/0. For local comnections,
the I/0 driver isolates the operating system from interrupt handling. In
order to handle remote connections, the line protocol handles error detection
an. retransmission, code transparency, cPde conversion and line control.

in all cases the application program activates the operating system by a
Supervisor service call. But at this level the application programmer still
zust do his own synchronization, buffer management, and routing (addressing
io machine as well as task). The message system ICCS was created to relieve
the application programmer of such complexity.

The currcnt structure of ICCS is presented in Figure 10. The interface

gets control from the application program via the CALL, The interface in

turn invokes ICCS with a sequence of fixed block messages which compose the

e (18 e

e &

e i

O e

data and/or request to be made of (sent to) a DBMS task. The CALL specifies
only a task namc as the entrance to the DBMS, and has no concern as to its
location. MCCS either sends the sequence of buffers to ITCS (41f it has
space availablé in its buffer space), or queues the messages in its own buffer
space until space becomes available. If the application program needs to
vait for a result, it will issue another CALL to MCCS to receive data from
*a task. A receive can specify the wait or proceed option. This is uoteg

. by MCCS. When ITCS sends a response (also using the CALL interface
between ITCS and the DBMS task), MCCS communicates the message to the appro-
priate application program - a;ain by its unique process (program, task)
name, (See Figure 11 for message flow possibilities.)

Since ICCS is comprehensive in its message exchange capabilities, an
appliéation to distributed data bases 1s possible. That is, since communi-
cation is at the task level, the DBMS task may be running on any machine
in the network. In either case, ICCS will perform the correct transmission
of (route) buffers. See Figures 11 and 12 for the flow of control in ICCS
anq the movement of data buffers through the distributed system. _Note
(See Figure 11) that the application program can activate DBMS tasks in
the host (the machine on which it is executing) using path 1; and it can
invoke a distributed DBMS task via path 2. While the prototype system
message flow for two data bases is indicated in Figure 11, the message
flow necessary in a system of multiple (more than 2) data bases on multiple
machines is achieved by adding new message systems. (MCCS is needed if the
new operating system is a single task system and ITCS is needed if it is a
mult{-tasking system.). Note that anAarrangement of four coples of a
message system (cach being MCCS or ITCS) establishes ICCS between any
application program and any number (fruom 1 to 4) of DBMS tasks in the network
topology of Figure 4. Since ICCS supports a "store and forward" function on

and it need

buffers, there need only be a possible route between machines;

not be direct.

ot AN E W P ey -

When an application program sends a message to a DBMS task in the same
sachine, ICCS queues messages destined for a host DBMS task (a CMS machine
in the prototype) in the "out" 1list of MCCS first. Then it merely links
it to the "in" 1list of HéCS or ITCS. (See Figure 12 for details.) 1In
case a distributed DBMS task is to be invoked, the messages are sent (by
MCCS or ITCS via the hardware connection) to be queued (when buffer space
iz available) in ITCS or MCCS. The. reverse operation is achieved in the
sane manner. This generalized message exchange mechanism achieves the
svnchronized operation of the application prégram and the DBMS tasks. In
srder to avoid deadlock on message buffers, which can arise when incoming
w-ssages are allocated all buffers, the buffet allocation algorithm of the
T.H.E. system [4] is implemented. This scheme reserves a minimal amount
»f buffers for outgoing messages and maintains a safe "region" of buffer
aliocation to input, output, and computing processes.

C. Heterogeneous architecture implications

Both hardware and software sicuctures of various architectures impact
the distribution of the DBMS. In the hardware category, application programs
must be portable to an appropriate machine. In the current prototype, any
language (which has compiler support in a particular machine) which supports
the CALL statement to an external proce&ure provides such portability.
Burth«r architectural dependence arises in the development of the DBMS for
each machine. These considerations aré addressed in another paper [5].

The last consideration for hardware dependency involves the characteristics
of the inter-computer connections. This only impacts the particular line
ntotocol. (This must be compatible between machines. In our prototype,
I¥M binary synchonous is used.) And since the ICCS system utilizes a
commerciaily available operating system in each wachine, it is isolated
from the particular hardware connection.

10

A second order impact on the distribution of the software is due to the
operating system services in a particular machine. Vendor-supplied software
cystems'vere vgewed as too large to construct. Therefore, a minimal set
of characteristics are pr;sented below which must be available in the
operating system of each machine, These items are most appropriate for mini-
computer real-time executives, since it is basically a mini-computer network
we wish to accommodate,

, " 1. The system must be multi-tasked with inter-task communications

i vhich minimally exch?nge a oﬂe word (16-bits) parameter.

2. It must support dynamic priority change via a system task. ICCS
uses this feature to schedule itself at the highest priority over
application and DBMS task functions since it manages buffer space.

3. It must support a synchronizing primitive to protect the buffer
space manager from unwarranted intrusion in its update process.
This mechanism can be semaphores, locks, or the ability to disable
interrupts for a short period of time, In the portable version

. of ITCS (written in FORTRAN with real-time extensions) the
interrupts are disabled and later enabled via a protected (special)

v system call. This call is unavailable to the application program
due to the access validation within the system module. This wodule
(very small) must be added to each machine's system modules. This
feature is necessary since the SEND and RECEIVE functions are
independent tasks which utilize a common buffer manager.

4. The system need only support basic direct and basic sequential

4 access methods.

5. The system command processor must be structured as a task with which
messages can be exchanged. This permits an operator to distribute
teasks around the system from any machine (as lbng as it is not
currently in runniﬁg state).

~ \ 11

T A ——T——

o e mra

o

g

IV. Summary and Future Enhancements

This paper develops the theme that a data base management system and
sn inter-task (machine) communications system are the central elements of
a data base acéessing system which is distributed in a network of mini-
computers. The data base management languages (DML, DDL, and DMCL) isolate
the user from the file and command system; and the message exchange facility
makes the network transparent to the user, the application program and §he
aucerface between the application program and DBMS task. Furthermore, the
Data Manipulation Language (DML) establishes a “clean” and well specified
interface to utilize in distrfbuting applications and DBMS tasks across
the network.

At present the network has two nodes with the anticipation of adding
two iére mini-computers locally and one additional mini and one large main
frame computer at remote sites, Since the current system does not permit
dynamic movement of tasks in the network (an operator must move them), a
wetwork control language (NCL) is being developed to define resource alloca-
tion in the network. The NCL operations are then converted to operating
system dependent (in a particular machine) resource control functions.
Further, refinement of the inter-computer communications system
te support the communication between a distributed operating system's

aodules 1s proceeding.

12

v e e j
. . R e s ‘
-
) aren LLARY
nesy a o
e
aruanon J7 100 I ¢ o
rROCRNE . YiR sy
A 811 $s Intet-Conputer
N : : : :: Comumntcotion
Wl % A3 jzn N
/-— —---—--\‘\
: (G =])
P Tom v ot e am v | -
; I |
[N A o nessacl grsiew
sast sasg 179 warenn n
L - QPLRATINC $YSTEM
saunn
BATA BASE RAULCEMEXT SYSTON ab
| @
I:A!l 2 BATA BASE We)
- Figure 3, Network DBMS with
Bi-Functional Machines
s Mg i
N * . Figare 1., Back-end DBMS
-
)
; A""I;L £ A arrL
1 2 i 3
[T
nacx acx ek .
e L)
H) "
. . 14 BAPA Rs3E » DATA BASE ¢ -
d g D @ Figure 4. Distributed DBMS
PATA M 3 .-lAl‘“l -'A‘I.Alll
Figure 2. Network : DBMS
/
d \
) 13 i
L)

e

. l P
. : 10D S
(HOST N
DATARASL F WERATING \ ’
N ST
g P R -
————e—- s ¥ ;
i . d\ L ho 3 RS WFFLS
111 SYSTLY onIICT M8 . \ -
VoRtizg arzall Staros sussenean | tiereace” -] . PESSAGE SYSIER n(es) J
. JEFQRMATION POUTINE A | 31 out{no PONSE
: HE by [s
- ————— L'—' .l' ©o . Leon) | ATUS
wae sover M . 1 WESSRGE SYSTC (707
. i e =
‘ . 2) } . . WESSAGE__ BUFFERS
[e 3 . .
€OMOL PROCRAN } l ‘ SACKED . . .
) ’ s— “ml‘ m .
) ' - .
: . } " DATA BASE MWIAGER
A i) PIA MSE /0 CONTRIL
1 A R L : ‘ :
. . . i) . \ - e
Figure 5. DBMS Software Distribution "
t .
Pigure 7. Application and DBMS Task
! Relationship in a Data Base
‘ Bnvirooment
. . : ‘ ’ ~ »
f - " * I raﬁﬁu 1 m&&din
i : “Jrasx :
: T . BATA ERFAC
: IR B lodoncl JphsepatTA save pouriE oo
! _ s) loTABLESBUFFER Basg AREAS B, P A T SOupY N
' A 2 % A RE AJSCHERA eaLL sesD (o) AL s (o)
Faon A22L, 2 | [A APPLI- ~
——— el CAiION ICALL RECEIVE CALL RECEIVE
sleli|oara Base g SUB - (aEsponse) {aesronse)
AYlNHANAGEHENT 1 SCHEMA 3
$ G|ISYSTEHN (DA 0 r--.-----J-.“---_.--._.-.-~-.--..
{ SYSTEH ‘senn’ anp 'senp AR
[PERIPHERAL DRIVERS P Reckive’ Recgive’
PROCEDURES PROCEDURES
os e
CHANNEL TO ncwnmn ADAPTER (VM)
s ressar SYSTEn FARN
ﬁ s PACH:
VIRTUAL TP,) AMKE (v
BATA BASE
-+ comumications Vin phiven
. RICE
Pigure 6. Distribution of Software in fassmt ?ssii.u Jaren
; Back-End Computer AR opfre veston)
} . ITTA-BAOK
; e comumation - enee e
i Py * A EASL PASSIRINT JAob2 (inS) | SubtOk S
;) v WA EALL BWIGRS ~
14,
:] - 14 3 BATA A1/ evIA F11C Y srsifn)

*tatk 10’s ¢crnp et

bata past nvs Ve
ravim

RAwe toey g

pym

ACCL"% 10 pi%iince -y
ancas A4

Pigure

Integrated IDMS System

f
1 j —
Y
W\
3
b
b
!.)
i
4
%

" Figure 10.

CORMIICATIONS
SwusCC/ssan

mAP~ETar -

¥ ca Leca mvice

e
1. v " = . Sesmas
e g HH H | v — St ' [—y*TY 0
oo tit H L sy
W (el | — :
. . 1. t . - h ; _-|. - - :._ .'u:.n- = .m:m.—.
T e mw mvie e 4 —
. ° 0) g
o . =)---& '
Figure 9. 1/0 Software Structure .
. . Figure 11, Flow of Messages in a
Distributed Data Base
) i : Counfiguration '
L4 kY
. -
. . . — -
. ;o
— ' —
. - . ON NECEIPT - apcressto
* ~ o msi | RS
. L 1
QUCILD OF In-LisT
oF KIST Lo
. s*m.'.;'.ll"ll$| :“. ar ,:.:o__,'
[X -1
L) . w?n oty I ,’;:""[';;’3"
PpL [CAY
:lﬂ;:&: b ‘:' - 1 [4 [] s N 10 PAC 0D €O ALETE
) L I A L] 3 ° AESBACT SKiin §ip
Jorterace H ;h I { H H
HE N L S 3) o 1 : bl il euiutD 03 fu-ast
6 ‘ : : : o ﬁD_l:J: : : Sata . STV 01 1 st OF MLIP KLGULST FA2LRy
o t v HERK H s i 0 PierEzd i s wtw [RCceave®
CRS AALN) 3 n ' .] H 1* CaMLEo .
M ¥ 1 bl sl e Al “want —
. H H [as Y o w RCSPONLL SCuT YO
: : IS i
A L] ALAVILeD v,
PP) 3750} E N saLeind i03 . —

® Iaeaneateo as sincit Tase

* beLtaatio AS RATIME TasEs
% Postisit west vasion or DSBS,
%0 MosIINE mATI-TRaCAD DRTS Tases

Structure of Message System
in Prototype Configuration

"Pigure 12,

:m fenin .
I uwn o-ou:-uu I L
war u}’mr

“ll " MLt rE3sact

LI)

o cteer .
WD 1 IN-LI%T
OF Mot svLhiy
we { Wi .
RN .
arLrurg stus 10 N
L LN o L

State transition diagram
for Application Program -
+ DBMS Task Message Exchange

oy g, T

o R

g

R

R Ty, R

TRl & R

16
V. References

1. Canaday, R. H., et al., "A Back-End Computcer for Data Base
Management,' CACM 17, 10 (Qct., 1974) pp. 575-582.

2, TIDMS DDL Reference Guide, Cullinane Corp.

3. IDpMS DML Programmer's Reference Guide, Cullinane Corp.
, 4. PBrom, C. Allocation of Virtual Store in the T.H.E. Multipro-
gramming System. In C.A.R. Hoare and R.H. Perrott (ed.) Operating
System Techniques, pp. 168-193. Academic Press, 1972.

5. Walleotine, V.E., et.al. On the Implementation of a Backend
Data Base Management System. Technical Report. Dept. of Computer
Scleace, Ransas State University, 1975.

Vi. Acknowledgements

' The autbors wish to acknowledge the programming effort of Sheldon Fox,

Lee Ailen, and Rich McBride. Their dedication to the joh 1s appreciated.

.

16

